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Figure 1. Removal of defocus blur in a photograph. The true PSF is approximated with a pillbox.

Abstract

Image deconvolution is the ill-posed problem of recover-
ing a sharp image, given a blurry one generated by a con-
volution. In this work, we deal with space-invariant non-
blind deconvolution. Currently, the most successful meth-
ods involve a regularized inversion of the blur in Fourier
domain as a first step. This step amplifies and colors the
noise, and corrupts the image information. In a second (and
arguably more difficult) step, one then needs to remove the
colored noise, typically using a cleverly engineered algo-
rithm. However, the methods based on this two-step ap-
proach do not properly address the fact that the image in-
formation has been corrupted. In this work, we also rely on
a two-step procedure, but learn the second step on a large
dataset of natural images, using a neural network. We will
show that this approach outperforms the current state-of-
the-art on a large dataset of artificially blurred images. We
demonstrate the practical applicability of our method in a
real-world example with photographic out-of-focus blur.

1. Introduction
Images can be blurry for a number of reasons. For exam-

ple, the camera might have moved during the time the im-

age was captured, in which case the image is corrupted by
motion blur. Another common source of blurriness is out-
of-focus blur. Mathematically, the process corrupting the
image is a convolution with a point-spread function (PSF).
A blurry image y is given by y = x ∗ v + n, where x is the
true underlying (non-blurry) image, v is the point spread
function (PSF) describing the blur and n is noise, usually
assumed to be additive, white and Gaussian (AWG) noise.
The inversion of the blurring process is called image decon-
volution and is ill-posed in the presence of noise.

In this paper, we address space-invariant non-blind de-
convolution, i.e. we want to recover x given y and v and
assume v to be constant (space-invariant) over the image.
Even though this is a long-standing problem, it turns out
that there is room for improvement over the best existing
methods. While most methods are well-engineered algo-
rithms, we ask the question: Is it possible to automatically
learn an image deconvolution procedure? We will show that
this is indeed possible.

Contributions: We present an image deconvolution proce-
dure that is learned on a large dataset of natural images with
a multi-layer perceptron (MLP). We compare our approach
to other methods on a large dataset of synthetically blurred
images, and obtain state-of-the-art results for all tested blur
kernels. Our method also achieves excellent results on a
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real photograph corrupted by out-of-focus blur. The execu-
tion time of our approach is reasonable (once trained for a
specific blur) and scales linearly with the size of the image.
We provide a toolbox on our website to test our method.

2. Related Work
Image deconvolution methods can be broadly separated

into two classes. The first class of methods is based on prob-
abilistic image priors, whereas the second class of methods
relies on a pre-processing step followed by denoising.

Levin et al. [20], Krishnan et al. [18], EPLL [31], and
FoE [26] belong to the first category. Levin et al., Krishnan
et al., and EPLL seek a maximum a posteriori (MAP) esti-
mate of the clean image x, given a blurry (and noisy) ver-
sion y and the PSF v. In other words, one seeks to find the
xmaximizing p(x|y, v) ∝ p(y|x, v)p(x). The first term is a
Gaussian likelihood, but modeling the marginal distribution
of images p(x) is a long-standing research problem and can
be handled in a number of ways. Levin et al. and Krish-
nan et al. assume that the image gradients follow a hyper-
Laplacian distribution (this is a common and well-founded
assumption, see e.g. [28]). EPLL [31] models p(x) using a
Gaussian mixture model (GMM). FoE [26] uses a Bayesian
minimum mean squared error estimate (MMSE) instead of
a MAP estimate and uses the Fields of Experts [24] frame-
work to model p(x).

The second category of methods apply a regularized in-
version of the blur, followed by a denoising procedure. In
Fourier domain, the inversion of the blur can be seen as a
pointwise division by the blur kernel. This makes the im-
age sharper, but also has the effect of amplifying the noise,
as well as creating correlations in the noise, see Figure 2.
Hence, these methods address deconvolution as a denoising
problem. Unfortunately, most denoising methods are de-
signed to remove AWG noise [23, 12, 9]. Deconvolution
via denoising requires the denoising algorithm to be able to
remove colored noise (non-flat power spectrum of the noise,
not to be confused with color noise of RGB images). Meth-
ods that are able to remove colored noise, such as DEB-
BM3D [10], IDD-BM3D [11] and others (e.g. [14]) have
been shown to achieve good deconvolution results.

Image denoising is itself a well-studied problem, with
methods too numerous to list in this paper. Some ap-
proaches to denoising rely on learning, where learning
can involve learning a probabilistic model of natural im-
ages [24], or of smaller natural image patches [31]. In that
case, denoising can be achieved using a maximum a pos-
teriori method. In other cases, learning involves learning a
discriminative model for denoising, for example using con-
volutional neural networks [19]. In [16], it is shown that
convolutional neural networks can achieve good image de-
noising results for AWG noise.

More recently, it was shown that a type of neural network

based on stacked denoising auto-encoders [29] can achieve
good results in image denoising for AWG noise as well as
for “blind” image inpainting (when the positions of the pix-
els to be inpainted are unknown) [30].

Also recently, plain neural networks achieved state-of-
the-art results in image denoising for AWG noise, provided
the neural nets have enough capacity and that sufficient
training data is provided [3, 4]. It was also shown that plain
neural networks can achieve good results on other types
of noise, such as noise resembling stripes, salt-and-pepper
noise, JPEG-artifacts and mixed Poisson-Gaussian noise.
Differences and similarities to our work: We address the
deconvolution problem as a denoising problem and there-
fore take an approach that is in line with [10, 11, 14], but
different from [18]. However, as opposed to engineered al-
gorithms [10, 11, 14], ours is learned. In that respect, we
are similar to [24, 31]. However, our method is a discrimi-
native method, and therefore more in line with [16, 30, 3].
We make no effort to use specialized learning architec-
tures [16, 30] but use multi-layer perceptrons, similar to [3].

3. Method
The most direct way to deconvolve images with neu-

ral networks is to train them directly on blurry/clean patch
pairs. However, as we will see in Section 4, this does not
lead to good results. Instead, our method relies on two
steps: (i) a regularized inversion of the blur in Fourier do-
main and (ii) a denoising step using a neural network. In
this section, we describe these two steps in detail.

3.1. Direct deconvolution

The goal of this step is to make the blurry image sharper.
This has the positive effect of localizing information, but it
has the negative side-effect of introducing new artifacts. In
our model, the underlying true (sharp) image x is blurred
with a PSF v and corrupted with AWG noise n with stan-
dard deviation σ:

y = v ∗ x+ n. (1)

The uncorrupted image can be estimated by minimizing
‖y− v ∗x‖2 with respect to x. A Gaussian prior on the gra-
dient of x adds a regularization term ασ2‖∇x‖2 to the ob-
jective. Furthermore, if we assume that our measurement of
the blur kernel is corrupted by AWG, a further term β‖x‖2
is obtained (see Sec. 6.4.1 in [2]), yielding

‖y − v ∗ x‖2 + ασ2‖∇x‖2 + β‖x‖2. (2)

In Fourier domain, this can be solved in a single step [6].
Denoting the Fourier representations with capital letters
(e.g. Fourier transform of x is X), the regularized inverse
of the blurring transformation is

R =
V̄

|V |2 + ασ2G+ β
, (3)



φ(x) = x ∗ v + n
↓ ↓ ↓

F−1(R�F(φ(x))) = F−1(R�F(x)�F(v)) + F−1(R�F(n))
z = xcorrupted + ncolored

Figure 2. Illustration of the effect of the regularized blur inversion. The goal of image deconvolution is to deblur y. The result z of the
regularized inversion is the sum of a corrupted image xcorrupted and colored noise ncolored. Other methods [10, 11, 14] attempt to remove
ncolored but ignore the noise in xcorrupted, whereas our method learns to denoise z and therefore addresses both problems.

where the division refers to element-wise division, V̄ is the
complex conjugate of V and G = |F(gx)|2 + |F(gy)|2.
F(gx) and F(gy) refer to the Fourier transforms of the dis-
crete gradient operators horizontally and vertically, respec-
tively. The hyper-parameters α and β are responsible for the
regularization: If both α = 0 and β = 0, there is no regu-
larization. Using the regularized inverseR, we can estimate
the Fourier transform of the true image by the so-called di-
rect deconvolution (following [15])

Z = R� Y = R� (X � V +N) (4)
= R�X � V +R�N, (5)

where � is element-wise multiplication. Hence, the im-
age recovered through the regularized inverse is given by
the sum of the colored noise image R � N and an image
R �X � V (as illustrated in Figure 2). The latter image is
exactly equivalent to X if α = β = 0 and the blur kernel
doesn’t have zeroes in its frequency spectrum, but otherwise
generally not. We therefore see that methods trying to re-
move the colored noise component R � N ignore the fact
that the image itself is corrupted. We propose as step (ii)
a procedure that removes the colored noise and additional
image artifacts.

After direct deconvolution, the inverse Fourier transform
ofZ is taken. The resulting image usually contains a special
form of distortions, which are removed in the second step
of our method.

3.2. Artifact removal by MLPs

A multi-layer perceptron (MLP) is a neural network that
processes multivariate input via several hidden layers and
outputs multivariate output. For instance, the function ex-
pressed by an MLP with two hidden layers is defined as

f(x) = b3 +W3 tanh(b2 +W2 tanh(b1 +W1x)), (6)

where the weight matrices W1,W2,W3 and vector-
valued biases b1, b2, b3 parameterize the MLP, and the

function tanh operates component-wise. We denote
the architecture of an MLP by a tuple of integers,
e.g. (392, 2047, 2047, 2047, 2047, 132) describes an MLP
with four hidden layers (each having 2047 nodes) and
patches of size 39 × 39 as input, and of size 13 × 13 as
output. Such an MLP has approximately 1.6 × 107 param-
eters to learn, which is similar in scale to other large net-
works reported in literature [8, 27]. MLPs are also called
feed-forward neural networks.
Training procedure: Our goal is to learn an MLP that maps
corrupted input patches to clean output patches. How do we
generate training examples? Starting with a clean image x
from an image database, we transform it by a function φ that
implements our knowledge of the image formation process.
For instance, in the simulated experiment in Section 4.2,
the clean image x is blurred by the PSF v and additionally
corrupted by noise n. In this case φ is equivalent to the
linear blur model in Equation (1).

The real-world photograph deblurred in Section 4.3 re-
quires a more complicated φ as described in that section.
We apply the direct deconvolution to φ(x) to obtain the im-
age

z = F−1(R�F(φ(x))), (7)

which is an image containing artifacts introduced by the di-
rect deconvolution. Input-output pairs for training of the
MLP are obtained by chopping z and x into patches. Us-
ing a large image database we can generate an abundance
of training pairs.

The free parameters of the MLP are learned on such
pairs of corrupted and clean image patches from z and x,
using stochastic gradient descent [19]. The parameters of
the MLP are then updated using the backpropagation al-
gorithm [25], minimizing the pixel-wise squared error be-
tween the prediction of the MLP and the clean patch. The
use of the squared error is motivated by the fact that we
are interested in optimizing the peak signal-to-noise ratio
(PSNR), which is monotonically related to the PSNR. We
follow the setup described in [3] for data normalization,



weight initialization and choice of the learning rate. We
perform the training procedure on a modern GPU, resulting
in a speedup factor of approximately an order of magnitude
compared to a CPU implementation.
Application to images: To deblur an image, we first ap-
ply the direct deconvolution. The resulting image (show-
ing characteristic artifacts) is then chopped into overlap-
ping patches and each patch is processed separately by the
trained MLP. The resulting reconstructed patches are placed
at the locations over their corrupted counterparts and aver-
aged in regions where they overlap. As described in [3],
instead of choosing every sliding-window patch, we use a
stride size of 3 (we pick every third patch) to achieve a
speed-up factor of 9, while still achieving excellent results.
This way, we can remove artifacts from an image of size
512 × 512 in approximately one minute on a modern com-
puter (on CPU in MATLAB).

4. Results

0 0.5 1 1.5 2 2.5 3

x 10
8

4

4.5

5

5.5

number of training samples

IP
S

N
R

 [
d
B

]

 

 

EPLL

Levin et al.

Krishnan et al.
DEB−BM3D

IDD−BM3D

α=20, (39
2
,4×2047,13

2
)

α=10, (39
2
,4×2047,13

2
)

α=20, (39
2
,1×2047,13

2
)

Figure 4. MLPs with more capacity lead to better results. If the
regularization in the direct deconvolution is weak, strong artifacts
are created, leading to bad results. IPSNR refers to the mean im-
provement in PSNR over 11 test images over their blurry counter-
parts. A square blur was used to produce this figure. The labels on
the right indicate the results achieved with competing methods.

4.1. Choice of parameter values

Which experimental setups lead to good results? To an-
swer this question, we monitor the results achieved with
different setups at different times during the training pro-
cedure. Figure 4 shows that the results tend to improve with
longer training times, but that the choice of the MLP’s ar-
chitecture as well as of the regularization strength α during
direct deconvolution is important. Using four hidden layers
instead of one leads to better results, given the same setting
for direct deconvolution. If four hidden layers are used, bet-
ter results are achieved with α = 20 than with α = 10.
This is explained by the fact that too weak a regularization
produces stronger artifacts, making artifact removal more
difficult. In our experiments, we use α = 20 for the direct
deconvolution and (392, 4×2047, 132) for the architecture.

As mentioned above, it is also conceivable to train di-
rectly on blurry/clean patch pairs (i.e. on pairs φ(x) and x,
instead of on pairs z and x), but this leads to results that

are approximately 1.5dB worse after convergence (given the
same architecture).

4.2. Comparison to other methods

To compare our approach to existing methods (described
in Section 2), we first perform controlled experiments on a
large set of images, where both the underlying true image
and the PSF are known. Since the PSF is known exactly,
we set β to zero. We train five MLPs, one for each of the
following scenarios.

(a) Gaussian blur with standard deviation 1.6 (size 25×25)
and AWG noise with σ = 0.04.

(b) Gaussian blur with standard deviation 1.6 (size 25×25)
and AWG noise with σ = 2/255 (≈ 0.008).

(c) Gaussian blur with standard deviation 3.0 (size 25×25)
and AWG noise with σ = 0.04.

(d) Square blur (box blur) with size 19×19 and AWG noise
with σ = 0.01.

(e) Motion blur from [21] and AWG noise with σ = 0.01.

Scenarios (a) and (b) use a small PSF and (c) and (d) use
a large PSF, whereas (b) and (d) use weak noise and (a)
and (c) use strong noise. Scenarios (a), (b) and (c) have
been used elsewhere, e.g. [11]. All of these blurs are par-
ticularly destructive to high frequencies and therefore espe-
cially challenging to deblur. Scenario (e) uses a motion blur
recorded in [21], which is easier to deblur. Each MLP is
trained on randomly selected patches from about 1.8 · 108

photos from the ImageNet dataset. Results seem to con-
verge after approximately 2 · 108 training samples, corre-
sponding to two weeks of GPU time. However, most com-
peting methods are surpassed within the first day of training.

We evaluate our method as well as all competitors on
black-and-white versions of the 500 images of the Berke-
ley segmentation dataset. The exponent of the sparseness
prior in Krishnan et al. [18] was set to 0.8. Krishnan et
al. and Levin et al. require a regularization parameter and
IDD- BM3D [11] has two hyper-parameters. We optimized
unknown values of these parameters on 20 randomly cho-
sen images from ImageNet. Since only the methods using
an image prior would be able to treat the boundary condi-
tions correctly, we use circular convolution in all methods
but exclude the borders of the images in the evaluation (we
cropped by half the size of the blur kernel).

A performance profile of our method against all others
on the full dataset is shown in Figure 3 and two example
images are shown in Figure 5. Our method outperforms all
competitors on most images, sometimes by a large margin
(several dB). The average improvement over all competi-
tors is significant. In Figure 5 we see that in smooth areas,
IDD-BM3D [11] and DEB-BM3D [10] produce artifacts re-
sembling the PSF (square blur), whereas our method does
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Figure 3. Comparison of performance over competitors. Values above zero indicate that our method outperforms the competitor.

not. The results achieved by Levin et al. and Krishnan et al.
look “grainy” and the results achieved by EPLL [31] look
more blurry than those achieved by our method. However,
IDD-BM3D yields better results than our method in areas
with repeating structures.

(a) (b) (c) (d) (e)
EPLL [31] 24.04 26.64 21.36 21.04 29.25
Levin et al. [20] 24.09 26.51 21.72 21.91 28.33
Krishnan et al. [18] 24.17 26.60 21.73 22.07 28.17
DEB-BM3D [10] 24.19 26.30 21.48 22.20 28.26
IDD-BM3D [11] 24.68 27.13 21.99 22.69 29.41
FoE [26] 24.07 26.56 21.61 22.04 28.83
MLP 24.76 27.23 22.20 22.75 29.42

Table 1. Comparison on 11 standard test images. Values in dB.

A comparison against the Fields of Experts based
method [26] was infeasible on the Berkeley dataset, due
to long running times. Table 1 summarizes the results
achieved on 11 standard test images for denoising [9],
downsampled to 128× 128 pixels.

For our scenarios IDD-BM3D is consistently the runner-
up to our method. The other methods rank differently de-
pending on noise and blur strength. For example, DEB-
BM3D performs well for the small PSFs.

In the supplementary material we demonstrate that the
MLP is optimal only for the noise level it was trained on,
but still achieves good results if used at the wrong noise
level.
Poisson noise For scenario (c) we also consider Poisson
noise with equivalent average variance. Poisson noise is
approximately equivalent to additive Gaussian noise, where
the variance of the noise depends on the intensity of the un-
derlying pixel. We compare against DEB-BM3D, for which
we set the input parameter (the estimated variance of the
noise) in such a way as to achieve the best results. Aver-
aged over the 500 images in the Berkeley dataset, the re-
sults achieved with an MLP trained on this type of noise are
slightly better (0.015dB) than with equivalent AWG noise,
whereas the results achieved with DEB-BM3D are slightly

worse (0.022dB) than on AWG noise. The fact that our re-
sults become somewhat better is consistent with the find-
ing that equivalent Poisson noise is slightly easier to re-
move [22]. We note that even though the improvement is
slight, this result shows that MLPs are able to automatically
adapt to a new noise type, whereas methods that are not
based on learning would ideally have to be engineered to
cope with a new noise type (e.g. [22] describes adaptations
to BM3D [9] for mixed Poisson-Gaussian noise, [7] handles
outliers in the imaging process).

4.3. Qualitative results on a real photograph

To test the performance of our method in a real-world
setting, we remove defocus blur from a photograph. We
use a Canon 5D Mark II with a Canon EF 85mm f/1.2 L
II USM lens to take an out-of-focus image of a poster, see
Figure 1. In order to make the defocus blur approximately
constant over the image plane, the lens is stopped down to
f/5.6, which minimizes lens aberrations.

The function φ mimicking the image formation for this
setup performs the following steps. First, an image from the
training dataset is gamma-decompressed and transformed to
the color-space of the camera (coefficients can be obtained
from DCRAW). Then the image is blurred with a pillbox
PSF with radius randomly chosen between 18.2 and 18.6.
The radius of the actual PSF can be estimated by looking
at the position of the first zero-frequency in Fourier do-
main. The randomness in the size of the pillbox PSF ex-
presses that we don’t know the exact blur and a pillbox is
only an approximation. This is especially true for our lens
stopped down by eight shutter blades. Then the color image
is converted to four half-size gray-scale images to model
the Bayer pattern. Next, noise is added to the image. The
variance of readout noise is independent of the expected il-
lumination, but photon shot noise scales linearly with the
mean, and pixel non-uniformity causes a quadratic increase
in variance [1]. Our noise measurements on light frames
are in agreement with this and can therefore be modeled by
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Figure 5. Images from the best (top) and worst (bottom) 5% results of scenario (d) as compared to IDD-BM3D [11]

a second-order polynomial. We have shown in Section 4.2
that our method is able to handle intensity-dependent noise.

To generate the input to the MLP we pre-process each of
the four channels generated by the Bayer pattern via direct
deconvolution using a pillbox of the corresponding size at
this resolution (radius 9.2). Because of the uncertainty of
the true kernel we set β = 10−3. With this input, we learn
the mapping to the original full resolution images with three
color channels. The problem is higher-dimensional than in
previous experiments, which is why we also increase the
number of units in the hidden layers to 3071 (the architec-
ture is therefore (4 × 392, 4 × 3071, 3 × 92)). In Figure 1
we compare to the best visual results we could achieve with
DEB-BM3D, the top algorithm with only one tunable pa-
rameter. The results were obtained by first de-mosaicking
and then deconvolving every color channel separately (see
supplementary material for other results).

In summary, we achieve a visually pleasing result by
simply modeling the image formation process. By training
on the full pipeline, we even avoid the need for a separate
de-mosaicking step. It is not clear how this can be optimally
incorporated in an engineered approach.

5. Understanding
Our MLPs achieve state-of-the-art results in image de-

blurring. But how do they work? In this section, we provide
some answers to this question.

Following [5], we call weights connecting the input to
the first hidden layer feature detectors and weights connect-
ing the last layer to the output feature generators, both of
which can be represented as patches. Assigning an input to
an MLP and performing a forward pass assigns values to
the hidden units, called activations. Finding an input pat-

tern maximizing the activation of a specific hidden unit can
be performed using activation maximization [13].

We will analyze two MLPs trained on the square PSF
from scenario (d), both with the architecture (392, 4 ×
2047, 132). The first MLP is trained on patches that are
pre-processed with direct deconvolution, whereas the sec-
ond MLP is trained on the blurry image patches themselves
(i.e. no pre-processing is performed).

Figure 6. Eight feature detectors of an MLP trained to remove a
square blur. The MLP was trained on patches pre-processed with
direct deconvolution. The two rightmost features detect edges that
are outside the area covered by the output patch, presumably de-
tecting artifacts.

Analysis of the feature detectors: We start with the feature
detectors of the MLP trained with pre-processed patches,
see Figure 6. The feature detectors are of size 39× 39 pix-
els. The area covered by the output patch lies in the middle
of the patches and is of size 13×13 pixels. Some feature de-
tectors seem to focus on small features resembling a cross.
Others detect larger features in the area covered by the out-
put patch (the middle 13 × 13 pixels). Still other feature
detectors are more difficult to describe. Finally, some fea-
ture detectors detect edges that are completely outside the
area covered by the output patch. A potential explanation
for this surprising observation is that these feature detectors
focus on artifacts created by the regularized inversion of the
blur.

We perform the same analysis on the MLP trained on
blurry patches, see Figure 7. The shape of the blur is evident



Figure 7. Eight feature detectors of an MLP trained to remove a
square blur. The MLP was trained on the blurry patches them-
selves (i.e. no pre-processing). The features are large compared
to the output patches because the information in the input is very
spread out, due to the blur.

in most feature detectors: They resemble squares. In some
feature detectors, the shape of the blur is not evident (the
three rightmost). We also observe that all features are large
compared to the size of the output patch (the output patches
are three times smaller than the input patches). This was
not the case for the MLP trained with pre-processing (Fig-
ure 6) and is explained by the fact that in the blurry inputs,
information is very spread out. We clearly see that the di-
rect deconvolution has the effect of making the information
more local.
Analysis of the feature generators: We now analyze the
feature generators learned by the MLPs. We will compare
the feature generators to the input patterns maximizing the
activation of their corresponding unit. We want to answer
the question: What input feature causes the generation of a
specific feature in the output?

Figure 8. Input patterns found via activation maximization [13]
(top row) vs. feature generators (bottom row) in an MLP trained
on pre-processed patches. We see a clear correspondence between
the input patterns and the feature generators. The MLP works by
generating the same features it detects.

We start with the MLP trained on pre-processed patches.
Figure 8 shows eight feature generators (bottom row) along
with their corresponding input features (top row) maximiz-
ing the activation of the same hidden unit. The input pat-
terns were found using activation maximization [13]. Sur-
prisingly, the input patterns look similar to the feature gen-
erators. We can interpret the behavior of this MLP as fol-
lows: If the MLP detects a certain feature in the corrupted
input, it copies the same feature into the output.

We repeat the analysis for the MLP trained on blurry
patches (i.e. without pre-processing). Figure 9 shows eight
feature generators (middle row) along with their corre-
sponding input features (top row). This time, the features
found with activation maximization look different from
their corresponding feature generators. However, the fea-
ture detectors look remarkably similar to the feature genera-
tors convolved with the PSF (bottom row). We interpret this
observation as follows: If the MLP detects a blurry version
of a certain feature in the input, it copies the (non-blurry)
feature into the output.

Figure 9. Input patterns found via activation maximization [13]
(top row) vs. feature generators (middle row) in an MLP trained
on blurry patches (i.e. no pre-processing). The input patterns look
like the feature generators convolved with the PSF (bottom row).
The MLP works by detecting blurry features and generating sharp
ones.

Summary: Our MLPs are non-linear functions with mil-
lions of parameters. Nonetheless, we were able to make a
number of observations regarding how the MLPs achieve
their results. This was possible by looking at the weights
connecting the input to the first hidden layer and the weights
connecting the last hidden layer to the output, as well as
through the use of activation maximization [13].

We have seen that the MLP trained on blurry patches
has to learn large feature detectors, because the informa-
tion in the input is very spread-out. The MLP trained on
pre-processed patches is able to learn finer feature detec-
tors. For both MLPs, the feature generators look similar:
Many resemble Gabor filters or blobs. Similar features are
learned by a variety of methods and seem to be useful for a
number of tasks [12, 29]. We were also able to answer the
question: Which inputs cause the individual feature gen-
erators to activate? Roughly speaking, in the case of the
MLP trained on pre-processed patches, the inputs have to
look like the feature generators themselves, whereas in the
case of the MLP trained on blurry patches, the inputs have
to look like the feature generators convolved with the PSF.
Additionally, some feature detectors seem to focus on typi-
cal pre-processing artifacts.

6. Conclusion

We have shown that neural networks achieve a new state-
of-the-art in image deconvolution. This is true for all sce-
narios we tested. Our method presents a clear benefit in
that it is based on learning: We do not need to design or
select features or even decide on a useful transform do-
main, the neural network automatically takes care of these
tasks. An additional benefit related to learning is that we
can handle different types of noise, whereas it is not clear
if this is always possible for other methods. Finally, by di-
rectly learning the mapping from corrupted patches to clean
patches, we handle both types of artifacts introduced by the
direct deconvolution, instead of being limited to removing
colored noise. We were able to gain insight into how our
MLPs operate: They detect features in the input and gen-
erate corresponding features in the output. Our MLPs have
to be trained on GPU to achieve good results in a reason-



able amount of time, but once learned, deblurring on CPU
is practically feasible. A limitation of our approach is that
each MLP has to be trained on only one blur kernel: Re-
sults achieved with MLPs trained on several blur kernels
are inferior to those achieved with MLPs trained on a single
blur kernel. This makes our approach less useful for mo-
tion blurs, which are different for every image. However, in
this case the deblurring quality is currently more limited by
errors in the blur estimation than in the non-blind deconvo-
lution step. Possibly our method could be further improved
with a meta-procedure, such as [17].
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